What types of support do clinical and translational researchers need during proposal preparation?

Jing Liu, PhD

Michigan Institute for Clinical and Health Research, University of Michigan, Ann Arbor, MI, USA
What are research development best practices during grant proposal preparation?

Why should we know?
Why should we know?

What are research development best practices during grant proposal preparation?

How do we develop research infrastructure and workforce for the future?
What goes into proposal development?

Science
Question, design, logistics, technical planning

Grant Proposals
What goes into proposal development?

Science
Question, design, logistics, technical planning

Team
Core team, collaborators, mentors

Grant Proposals
What goes into proposal development?

Science
Question, design, logistics, technical planning

Team
Core team, collaborators, mentors

Coordination
Funding agencies, research resources, team interactions, regulatory agencies

Grant Proposals
What goes into proposal development?

Science
- Question, design, logistics, technical planning

Team
- Core team, collaborators, mentors

Coordination
- Funding agencies, research resources, team interactions, regulatory agencies

Administration
- Budgeting, standard components, guidelines and requirements, submission
Who supports each part?

Grant Proposals

Science

Team

Coordination

Administration

Proposal administration
Who supports each part?

- Science
- Coordination
- Team
- Administration

Grant Proposals

- Research Development
- Proposal administration
What is typically offered now?

What are the needs of the investigators?
What are typically offered now?

NORDP Job Board

The NORDP job board is a free service provided to advance the emerging role of Research Development professionals within academia and in other organizations. To post either an open position or to post your CV please send the text in Word or pdf format to jobs@nordp.org.

Jobs

- Associate Director, Health and Research - Cure Violence, University of Illinois at Chicago (Posted 04-08-15)
- Director, Sponsored Research & Program Development, Rockefeller University (Posted 03-27-15)
- Director of Research Integrity and Compliance, University of North Texas (Posted 04-08-15)
- Grants Coordinator Position, North Carolina State University (Posted 04-08-15)
- Manager, Strategic Research Initiatives, University of Tennessee (Posted 03-03-15)
- Project Manager, California State University, Northridge (Posted 04-08-15)
- Proposal Developer (up to 3 positions available), University of Illinois at Urbana/Champaign (Posted 01-24-15)
- Research Development Officer (2 positions available), University of California, Merced (Posted 03-03-15)
- System Director, Office of Sponsored Programs, CHRISTUS Health (Posted 03-03-15)
What are typically offered now?

I went through a number of the job postings that appeared at NORDP website since 2009, and categorized the pre-award support into a few major classes.

Final sample: 56 job postings.

(Special thanks to Holly Falk-Krzesinski for archiving and sharing all these postings)
What are typically offered now?

Job postings examined: 56

- Identify funding opps (39)
- Review/edit proposals (30)
- Coordinate complex proposals (27)
- Develop and provide training (21)
- Draft non-technical components (19)
- Facilitate collaborations (16)
- Provide template language (15)
- Coordinate submission (15)
- Budget (3)
- Mentor on study design and Idea development (1)
What are typically offered now?

Job postings examined: 56

- Identify funding opps (39)
- Review/edit proposals (30)
- Coordinate complex proposals (27)
- Develop and provide training (21)
- Draft non-technical components (19)
- Facilitate collaborations (16)
- Provide template language (15)
- Coordinate submission (15)
- Budget (3)
- Mentor on study design and idea development (1)

10/56 positions required a background of PhD and/or research
Michigan Institute for Clinical and Health Research
MICHR was created in 2006, awarded a $55M Clinical and Translational Science Award from the NIH in 2007, and renewed in 2012. It is part of a national consortium of 62 institutions working together to accelerate discoveries toward better health.
MICHR At A Glance

Research Guidance and Support

Idea and grant proposal development
Biostatistics
Research Monitoring
Regulatory Support
Bioinformatics
MICHR At A Glance

Research Guidance and Support

- Idea and grant proposal development
- Biostatistics
- Research Monitoring
- Regulatory Support
- Bioinformatics

Research Infrastructure

- Community Engagement
- Study participant recruitment
- Biorepository
- Clinical Research Facility
MICHR At A Glance

Research Guidance and Support
- Idea and grant proposal development
- Biostatistics
- Research Monitoring
- Regulatory Support
- Bioinformatics

Workforce Training
- Workshops and symposia
- Summer courses
- Degree programs
- Career development Awards
- Mentored, intensive programs

Research Infrastructure
- Community Engagement
- Study participant recruitment
- Biorepository
- Clinical Research Facility
MICHRR At A Glance

Research Guidance and Support
- Idea and grant proposal development
- Biostatistics
- Research Monitoring
- Regulatory Support
- Bioinformatics

Workforce Training
- Workshops and symposia
- Summer courses
- Degree programs
- Career development Awards
- Mentored, intensive programs

Research Infrastructure
- Community Engagement
- Study participant recruitment
- Biorepository
- Clinical Research Facility

Pilot Funding
MICHHR At A Glance

Research Guidance and Support
- Idea and grant proposal development
- Biostatistics
- Research Monitoring
- Regulatory Support
- Bioinformatics

Workforce Training
- Workshops and symposia
- Summer courses
- Degree programs
- Career development Awards
- Mentored, intensive programs

Research Infrastructure
- Community Engagement
- Study participant recruitment
- Biorepository
- Clinical Research Facility

Pilot Funding
Idea and grant proposal development

1. The structure of our unit that provides consultation in idea and proposal development

2. The impact of our service

3. Areas in which investigators need support from our unit
1. The structure of our unit that provides consultation in idea and proposal development
Idea and grant proposal development

Research Development Core (RDC)
RDC Offerings

Consultation: research ideas and grant proposals
Editing: grant proposals
RDC Team

Two key consultants (senior faculty)

Staff specialists

Biostatisticians (faculty and staff)

Ad hoc consultants with content expertise (faculty and staff)
We provide consultation to…

- Clinical, translational and basic research
- All types of grants: federal, foundation, pilot, training grants, center grants, clinical trials...
- One hour meeting, with before-meeting informal consultation and after-meeting follow-up
When investigators have an idea for a research proposal, RDC can help by:

- Helping improve study design, biostatistics
- Helping build collaborations
- Providing advice on funding sources and submission strategies
- Connecting investigators to MICHR research services and other research resources
When investigators

Plan career development grants

RDC

- Helps develop career development plans and mentoring plans
- Connects investigators to potential mentors
When investigators have a proposal in near-final form

RDC
- Provides grant editing service
When investigators
Consider proposal resubmission
RDC
- Helps address all aspects of reviewer comments, including study design, biostatistics, study team composition, career development plan, and research resources
1. The structure of our unit that provides consultation in idea and proposal development

2. The impact of our service
RDC’s Reach

January, 2011 – present

- 336 Consultations
- 73% Junior vs. 27% Senior Investigators
- 59 unique departments

Customers by College/School

- Medical School: 77.6%
- School of Social Work: 0.4%
- ISR: 0.4%
- College of Engineering: 0.8%
- College of Pharmacy: 1.2%
- School of Dentistry: 1.2%
- School of Kinesiology: 3.2%
- LSA: 4.0%
- School of Nursing: 4.0%
- School of Public Health: 7.2%
- Medical School: 77.6%
Grant Mechanisms

January 1, 2011 – May, 2013

- NIH 69%
- R Series 33%
- K Series 16%
- U Series 6%
- P Series 4%
- F Series 2%
- Other 8%
- MICHR 10%
- DOD 4%
- Other 17%
Investigator Feedback

- 95% of investigators report that RDC has impacted their proposals moderately to very much

- 92% of investigators report that it is very likely that they will use or recommend RDC in the future
Difficulty in assessing impact that highlights common issues when we determine best practices in research support.

1. Biased sample: those who come to us are either struggling, or extremely well organized.
2. We sometimes advise people not to submit, or to make major changes to the proposals.
3. There is no guarantee that any investigator incorporates our recommendations.
4. The effect of our consultation may also show in other, similar proposals that the investigators write.
Method:

1. We collected investigators’ biosketch before the proposal consultation and 1-2 years after their RDC consultation.
2. We recorded new grants that may have been benefitted from the consultation.
3. We determined whether the awarded proposals were closely related to those discussed with RDC: same proposal and same funding agency? Same proposal but different funding agency? Related but not identical proposal?
Impact of our consultation

of investigators in sample: 59
(%) with new grants 45 (76%)
of new grants (average per person): 100 (1.7)
of new grants where a consultee is a PI or co-PI: 66
of new grants where a consultee is a co-I: 34
of new training grant (K12, etc.) trainees: 3
of federal grants: 34
of foundation or industry grants: 36
of internal grants: 30
Impact of our consultation

of new grants, same proposals as discussed with RDC, same funding agencies: 14
of new grants, same proposals as discussed with RDC, different funding agencies: 9
of new grants, slightly different proposals as discussed with RDC: 6

Yield: 29 proposals for 59 investigators, or 50%
Collaborations:

We followed up with 14 investigators who received specific recommendations during 2013 for collaborators and mentors.

7 worked with collaborators or mentors as we recommended.

They also contacted 9 other potential collaborators or mentors that we recommended but ended up not working together (due to funding, timing, people leaving the institution, etc).
Idea and grant proposal development

1. The structure of our unit that provides consultation in idea and proposal development

2. The impact of our service

3. Areas in which investigators need support from our unit
<table>
<thead>
<tr>
<th>Areas that we consult with</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design</td>
</tr>
<tr>
<td>Biostatistics</td>
</tr>
<tr>
<td>Mentoring and partnership</td>
</tr>
<tr>
<td>Research logistics: recruitment, study management, preliminary data, business development, etc.</td>
</tr>
<tr>
<td>Career direction</td>
</tr>
<tr>
<td>Submission/resubmission strategy</td>
</tr>
<tr>
<td>Regulatory issues</td>
</tr>
<tr>
<td>Funding sources</td>
</tr>
</tbody>
</table>
Areas that we consult with

The investigators are the experts of their own science, but we know what a good proposal looks like.

We also know the resources.
What support do investigators need?

Sample: 124 investigators (98 junior, 26 senior)

Method: compare the areas where they would like to receive help, and the areas where help was actually given.
What did the investigators ask?

Junior Investigators (98):

<table>
<thead>
<tr>
<th>Advice sought</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design</td>
<td>68%</td>
</tr>
<tr>
<td>Biostatistics</td>
<td>42%</td>
</tr>
<tr>
<td>Funding sources</td>
<td>30%</td>
</tr>
<tr>
<td>Mentoring/partnership</td>
<td>29%</td>
</tr>
<tr>
<td>Career direction</td>
<td>27%</td>
</tr>
<tr>
<td>Sub/resub strategy</td>
<td>22%</td>
</tr>
<tr>
<td>Regulatory issues</td>
<td>5%</td>
</tr>
</tbody>
</table>
What did the investigators receive?

Junior Investigators (98):

<table>
<thead>
<tr>
<th>Topic</th>
<th>Advice sought</th>
<th>Advice given</th>
<th>Change in content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design</td>
<td>68%</td>
<td>70%</td>
<td>60%</td>
</tr>
<tr>
<td>Biostatistics</td>
<td>42%</td>
<td>41%</td>
<td>35%</td>
</tr>
<tr>
<td>Funding sources</td>
<td>30%</td>
<td>45% (p<0.001)</td>
<td></td>
</tr>
<tr>
<td>Mentoring/partnership</td>
<td>29%</td>
<td>63% (p<0.0001)</td>
<td></td>
</tr>
<tr>
<td>Career direction</td>
<td>27%</td>
<td>38% (p=0.01)</td>
<td>28%</td>
</tr>
<tr>
<td>Sub/resub strategy</td>
<td>22%</td>
<td>37% (p<0.001)</td>
<td></td>
</tr>
<tr>
<td>Regulatory issues</td>
<td>5%</td>
<td>10%</td>
<td></td>
</tr>
</tbody>
</table>

Between-group significance level of change: p<0.001.
Scientific Content

Junior Investigators (98):

<table>
<thead>
<tr>
<th>Topic</th>
<th>Advice sought</th>
<th>Advice given</th>
<th>Change in content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design</td>
<td>68%</td>
<td>70%</td>
<td>60%</td>
</tr>
<tr>
<td>Biostatistics</td>
<td>42%</td>
<td>41%</td>
<td>35%</td>
</tr>
<tr>
<td>Funding sources</td>
<td>30%</td>
<td>45% (p<0.001)</td>
<td></td>
</tr>
<tr>
<td>Mentoring/partnership</td>
<td>29%</td>
<td>63% (p<0.0001)</td>
<td></td>
</tr>
<tr>
<td>Career direction</td>
<td>27%</td>
<td>38% (p=0.01)</td>
<td>28%</td>
</tr>
<tr>
<td>Sub/resub strategy</td>
<td>22%</td>
<td>37% (p<0.001)</td>
<td></td>
</tr>
<tr>
<td>Regulatory issues</td>
<td>5%</td>
<td>10%</td>
<td></td>
</tr>
</tbody>
</table>
The Research Team

Junior Investigators (98):

<table>
<thead>
<tr>
<th>Topic</th>
<th>Advice sought</th>
<th>Advice given</th>
<th>Change in content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design</td>
<td>68%</td>
<td>70%</td>
<td>60%</td>
</tr>
<tr>
<td>Biostatistics</td>
<td>42%</td>
<td>41%</td>
<td>35%</td>
</tr>
<tr>
<td>Mentoring/partnership</td>
<td>29%</td>
<td>63% (p<0.0001)</td>
<td></td>
</tr>
<tr>
<td>Funding sources</td>
<td>30%</td>
<td>45% (p<0.001)</td>
<td></td>
</tr>
<tr>
<td>Career direction</td>
<td>27%</td>
<td>38% (p=0.01)</td>
<td>28%</td>
</tr>
<tr>
<td>Sub/resub strategy</td>
<td>22%</td>
<td>37% (p<0.001)</td>
<td></td>
</tr>
<tr>
<td>Regulatory issues</td>
<td>5%</td>
<td>10%</td>
<td></td>
</tr>
</tbody>
</table>
What did the investigators receive?

Junior Investigators (98):

1. How to best answer the scientific question.

2. How to build the best research team.
Where and how to submit

Junior Investigators (98):

<table>
<thead>
<tr>
<th></th>
<th>Advice sought</th>
<th>Advice given</th>
<th>Change in content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design</td>
<td>68%</td>
<td>70%</td>
<td>60%</td>
</tr>
<tr>
<td>Biostatistics</td>
<td>42%</td>
<td>41%</td>
<td>35%</td>
</tr>
<tr>
<td>Funding sources</td>
<td>30%</td>
<td>45% (p<0.001)</td>
<td></td>
</tr>
<tr>
<td>Mentoring/partnership</td>
<td>29%</td>
<td>63% (p<0.001)</td>
<td></td>
</tr>
<tr>
<td>Career direction</td>
<td>27%</td>
<td>38% (p=0.01)</td>
<td>28%</td>
</tr>
<tr>
<td>Sub/resub strategy</td>
<td>22%</td>
<td>37% (p<0.001)</td>
<td></td>
</tr>
<tr>
<td>Regulatory issues</td>
<td>5%</td>
<td>10%</td>
<td></td>
</tr>
</tbody>
</table>
Career direction

Junior Investigators (98):

<table>
<thead>
<tr>
<th>Topic</th>
<th>Advice sought</th>
<th>Advice given</th>
<th>Change in content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design</td>
<td>68%</td>
<td>70%</td>
<td>60%</td>
</tr>
<tr>
<td>Biostatistics</td>
<td>42%</td>
<td>41%</td>
<td>35%</td>
</tr>
<tr>
<td>Funding sources</td>
<td>30%</td>
<td>45% (p<0.001)</td>
<td></td>
</tr>
<tr>
<td>Mentoring/partnership</td>
<td>29%</td>
<td>63% (p<0.0001)</td>
<td></td>
</tr>
<tr>
<td>Career direction</td>
<td>27%</td>
<td>38% (p=0.01)</td>
<td>28%</td>
</tr>
<tr>
<td>Sub/resub strategy</td>
<td>22%</td>
<td>37% (p<0.001)</td>
<td></td>
</tr>
<tr>
<td>Regulatory issues</td>
<td>5%</td>
<td>10%</td>
<td></td>
</tr>
</tbody>
</table>
What did the investigators receive?

Junior Investigators (98):

1. How to best answer the scientific question.
2. How to build the best research team.
3. Where and how to submit proposals.
4. Career planning
What Scientific Questions to Pursue?

Junior Investigators (98):

Specific Aims

Advice given: 43%
Change in content: 38%
What did the investigators receive?

Junior Investigators (98):

1. The scientific questions that they should ask
2. How to best answer the scientific question.
3. How to build the best research team.
4. Where and how to submit proposals.
5. Career planning
What did the investigators ask?

Senior Investigators (26):

<table>
<thead>
<tr>
<th>Topic</th>
<th>Advice sought</th>
<th>Junior Investigators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design</td>
<td>73%</td>
<td>68%</td>
</tr>
<tr>
<td>Biostatistics</td>
<td>46%</td>
<td>42%</td>
</tr>
<tr>
<td>Funding sources</td>
<td>31%</td>
<td>30%</td>
</tr>
<tr>
<td>Mentoring/partnership</td>
<td>35%</td>
<td>29%</td>
</tr>
<tr>
<td>Career direction</td>
<td>12%</td>
<td>27%</td>
</tr>
<tr>
<td>Sub/resub strategy</td>
<td>31%</td>
<td>22%</td>
</tr>
<tr>
<td>Regulatory issues</td>
<td>15%</td>
<td>5%</td>
</tr>
</tbody>
</table>
What did the investigators receive?

Senior Investigators (26):

<table>
<thead>
<tr>
<th>Advice sought</th>
<th>Advice given</th>
<th>Change in content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design</td>
<td>73%</td>
<td>65%</td>
</tr>
<tr>
<td>Biostatistics</td>
<td>46%</td>
<td>42%</td>
</tr>
<tr>
<td>Funding sources</td>
<td>31%</td>
<td>46%</td>
</tr>
<tr>
<td>Mentoring/partnership</td>
<td>35%</td>
<td>62% (p<0.01)</td>
</tr>
<tr>
<td>Career direction</td>
<td>12%</td>
<td>8%</td>
</tr>
<tr>
<td>Sub/resub strategy</td>
<td>31%</td>
<td>35%</td>
</tr>
<tr>
<td>Regulatory issues</td>
<td>15%</td>
<td>8%</td>
</tr>
</tbody>
</table>
What did the investigators receive?

<table>
<thead>
<tr>
<th>Category</th>
<th>Advice sought</th>
<th>Advice given</th>
<th>Change in content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design</td>
<td>73%</td>
<td>65%</td>
<td>58%</td>
</tr>
<tr>
<td>Biostatistics</td>
<td>46%</td>
<td>42%</td>
<td>38%</td>
</tr>
<tr>
<td>Funding sources</td>
<td>31%</td>
<td>46%</td>
<td></td>
</tr>
<tr>
<td>Mentoring/partnership</td>
<td>35%</td>
<td>62% (p<0.01)</td>
<td></td>
</tr>
<tr>
<td>Career direction</td>
<td>12%</td>
<td>8%</td>
<td>4%</td>
</tr>
<tr>
<td>Sub/resub strategy</td>
<td>31%</td>
<td>35%</td>
<td></td>
</tr>
<tr>
<td>Regulatory issues</td>
<td>15%</td>
<td>8%</td>
<td></td>
</tr>
</tbody>
</table>
What Scientific Questions to Pursue?

<table>
<thead>
<tr>
<th>Senior Investigators (26):</th>
<th>Advice given</th>
<th>Change in content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Aims</td>
<td>42%</td>
<td>38%</td>
</tr>
</tbody>
</table>
What did the investigators need?

All Investigators:

1. The scientific questions that they should ask
2. How to best answer the scientific question.
3. How to build the best research team.
4. Where and how to submit proposals.
5. Career planning (for junior investigators).
What can we offer?

Our conclusion

The scientific questions that they should ask

How to best answer the scientific question.

How to build the best research team.

Where and how to submit proposals.

Career planning (for junior investigators).

RD main duties now

Identify funding opps

Review/edit proposals

Coordinate complex proposals

Develop and provide training

Draft non-technical components

Facilitate collaborations

Provide template language

Coordinate submission

Budget

Mentor on study design and idea development
Where do investigators need support?

- Science
- Coordination
- Team
- Administration

Grant Proposals

Proposal administration
Recommendation

Don’t forget the fundamentals.
Another Example

The departmental review program at Psychiatry Department, University of Pittsburgh

Acad Psychiatry (2014) 38:5–10
DOI 10.1007/s40596-013-0027-1

EMPIRICAL REPORT

Using Peer Review to Improve Research and Promote Collaboration

David J. Kupfer & Anneliese N. Murphree &
Paul A. Pilkonis & Judy L. Cameron & Rosary T. Giang &
Nathan E. Dodds & Kasey A. Godard & David A. Lewis
Another Example

The departmental review program at Psychiatry Department, University of Pittsburgh

Focusing on scientific content and building the right team.

Whopping success: in recent years it takes 10% of all NIH funding to all Psychiatry departments in the nation.
What We Needed to run RDC

A small core group of experienced scientists and staff specialists

A small number of ad hoc consultants

Collaboration with campus-wide research support programs
Why a Small Group could Work

Good science and good investigators have common characteristics

- Is the scientific question meaningful and impactful?
- Does the study design answer the question?
- Does the study team have the right expertise and work well together?
- Is the investigator’s career going to the right direction?
Future Directions for RDC

Support more investigators

Support a wider range of research proposals

Help people who are successful to be more successful
What did the investigators need?

Junior and senior Investigators both received guidance during proposal preparation in the following areas:

1. The scientific questions that they should ask
2. How to best answer the scientific question.
3. How to build the best research team.
4. Where and how to submit proposals.

Junior Investigators only:

Career planning
Continued Development of Expertise

Why would *independent* investigators still need support on the fundamentals?

1. The training process of research “sense” is not a formal one and it depends a lot on each individual and their mentors.

2. Professionals need continued support and training.

The role of research development professionals? Can we help formalize this training process?
Evidence-based best practices

Today’s research environment:

1. Tight funding

2. The society and the government demand for higher impact

3. Knowledge and methodology explosion calls for more effective research models

4. Intrinsic issues: lack of reproducibility, research integrity…
Research Irreproducibility

Nature Special: Challenges in irreproducible research
Journals, research laboratories and institutions and funders all have an interest in tackling issues of irreproducibility. We hope that the articles contained in this...
www.nature.com/nature/focus/reproducibility/

In science, irreproducible research is a quiet crisis - Ideas - The
Mar 19, 2015 ... Unless researchers point out the limitations of one another's work, the ... how much research is irreproducible — and why — and are looking for...
www.boston.com/ideas/2015/.../irreproducible-research/story.html

Announcement: Reducing our irreproducibility - Nature News ...
Apr 24, 2013 ... Over the past year, Nature has published a string of articles that highlight failures in the reliability and reproducibility of published research
www.nature.com/.../announcement-reducing-our-Irreproducibility-1.12862

Irreproducibility in Life Science Research - A Pervasive Problem
Reproducibility is the foundation of life science research, yet far too often, the inability to reproduce experimental data has resulted in the invalidation of research...
f1health.com/.../irreproducibility-in-life-science-research-a-pervasive-problem/

Irreproducible Experimental Results
Based on statistical simulations, Ioannidis argued that, for most study designs and settings, it is more likely that a research outcome is false than true. He pointed ...
circ.ahajournals.org/content/125/10/1211.full/

The Global Biological Standards Institute Engages Life Sciences ...
The Global Biological Standards Institute Engages Life Sciences Community to Address Irreproducibility of Research Findings - The causes are multifactorial ...

Dealing with Irreproducibility | The Scientist Magazine®
Apr 8, 2014 ... Researchers discuss the growing pressures that are driving ... and fraud, and general problems of data irreproducibility, spurring the National ...
www.the-scientist.com/?articles.view/articleNo/.../Irreproducibility/
The Role of Research Development

Many opportunities to shape research for the future

Be conscious about best practices

Use rigorous research to examine our own work